- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Butcher, Raymond J (2)
-
Parry, Christian S (2)
-
Ramadhar, Timothy R (2)
-
Wilson, Michael D (2)
-
Abraham, Alex R (1)
-
Kwofie, Samuel K (1)
-
Kwofie, Samuel Kojo (1)
-
Li, Yue (1)
-
Nekhai, Sergei (1)
-
Niedermaier, Cynthia_A Tope (1)
-
Valencia, Josh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Parry, Christian S; Li, Yue; Kwofie, Samuel Kojo; Valencia, Josh; Niedermaier, Cynthia_A Tope; Ramadhar, Timothy R; Nekhai, Sergei; Wilson, Michael D; Butcher, Raymond J (, Journal of Molecular Structure)Disrupted iron balance causes anemia and iron overload leading to hypoxia and systemic oxidative stress. Iron overload may arise from red blood cell disorders such as sickle cell disease, thalassemia major and primary hemochromatosis, or from treatment with multiple transfusions. These hematological disorders are characterized by constant red blood cell hemolysis and the release of iron. Hemolysis is a continuous source of reactive oxygen species whose accumulation changes the redox potential in the erythrocyte, the endothelium and other tissue causing damage to organ systems. Iron overload and its consequences can be treated with iron chelating therapy. We have carried out structural studies of small molecule ligands that were previously reported for their iron chelating ability. The chelators were analyzed using mass spectrometry, proton nuclear magnetic resonance and infrared spectroscopy. The iron chelators, 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone, 3-ethyl-1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}thiourea and 1-{[2-phenyl-1-(pyridin-2-yl)ethylidene]amino}-3-(prop‑2-en-1-yl)thiourea in their unbound conformation were crystallized and their structures were determined. This work addresses the evolution of a thiosemicarbazone class of iron chelators by analyzing and comparing the structure and properties of a series of closely related molecules, relating these to their in vitro activity thus providing valuable update to the search for newer, better and more effective iron chelators and metal-based therapeutics.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
